Djoun Academy
Subscribe
  • Home
    • Home – Layout 1
    • Home – Layout 2
    • Home – Layout 3
    • Home – Layout 4
    • Home – Layout 5
  • Linear Algebra
  • Calculus
  • My Courses
  • Explore

    Invertible Matrices and Elementary Matrices

    Invertible Matrices and $2 \times 2$ Invertible Matrices: Properties and Applications

    Introduction to Matrices: Definition, Operations, and Applications.

    Homogeneous Linear Systems

  • Quizzes
No Result
View All Result
djounacademy.com
  • Home
    • Home – Layout 1
    • Home – Layout 2
    • Home – Layout 3
    • Home – Layout 4
    • Home – Layout 5
  • Linear Algebra
  • Calculus
  • My Courses
  • Explore

    Invertible Matrices and Elementary Matrices

    Invertible Matrices and $2 \times 2$ Invertible Matrices: Properties and Applications

    Introduction to Matrices: Definition, Operations, and Applications.

    Homogeneous Linear Systems

  • Quizzes
No Result
View All Result
djounacademy.com
No Result
View All Result
Home Linear Algebra

Homogeneous Linear Systems

by dinamo@aims-cameroon.org
March 1, 2023
in Linear Algebra
0
Share on FacebookShare on Twitter

Homogeneous Linear Systems

A particular case of the linear system defined in the previous lesson is when the constants $b_i$ are all equal to zero. In this case, we say that the linear system is homogeneous.

Definition 1. A system of $m$ linear equations in $n$ unknown variables $x_1, x_2,\ldots, x_n$
of the form
\begin{eqnarray}\label{homogeneous-linear-system}
\begin{array}{ccccccccccc}
a_{11}x_1 & +& a_{12}x_2& +& a_{13}x_3& +& \cdots & +&a_{1n}x_n&=&0\\
a_{21}x_1 & +& a_{22}x_2& +& a_{23}x_3& +& \cdots & +&a_{2n}x_n&=&0\\
a_{31}x_1 & +& a_{32}x_2& +& a_{33}x_3& +& \cdots & +&a_{3n}x_n&=&0\\
& \vdots & & \vdots & & \vdots & & \vdots & &\vdots &\\
a_{m1}x_1 & +& a_{m2}x_2& +& a_{m3}x_3& +& \cdots & +&a_{mn}x_n&=&0
\end{array}
\end{eqnarray}
is called a homogeneous linear system.

If we set $x_1 = 0,$ $x_2 = 0,\ldots, x_n = 0 $, we see that the system is satisfied. Hence $(0,0,\cdots,0)$ is always a solution of the homogeneous linear system \eqref{homogeneous-linear-system}. Therefore the homogeneous linear system \eqref{homogeneous-linear-system} is always consistent. The solution $(0,0,\cdots,0)$ is called the trivial solution; if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has a trivial solution, there are only
two possibilities for its solutions:

  • The system has only a trivial solution.
  • The system has infinitely many solutions in addition to the trivial solution.

Theorem 2 (Free Variable Theorem for Homogeneous Systems). If a homogeneous linear system has $n$ unknowns, and if the reduced row echelon form
of its augmented matrix has $r$ nonzero rows, then the system has $n-r$ free variables.

Example 1. Consider a homogeneous linear system of $7$ equations in $9$ unknowns. Assume that the reduced row echelon form of the augmented matrix $A$ has $4$ non-zero rows. How many parameters (or free variables) does the linear system $Ax=0$ have?

Answer 0.1.

The idea is to use the Free Variable Theorem for Homogeneous Systems. It is given that the number of unknowns is $n=9$ and that the RREF has $r=4$ nonzero rows. It follows by Theorem ?? that there are $9-4=5$ free variables.

Example 2. Let $A$ be a matrix of size $7\times 8$. Assume that the reduced row echelon form of $A$ has $2$ non-zero rows. How many parameters (or free variables) does the linear system $Ax=0$ have?

Answer 0.2.

It is given that the number of unknowns is $n=8$ and that the RREF has $r=2$ nonzero rows. It follows by Theorem ?? that there are $8-2=6$ free variables.

Example 3.

Consider a homogeneous linear system $A\mathrm{X}=0$, where $A$ is a non-zero $4\times 5$ matrix. What are the maximum and minimum parameters in the general solution to this system?

Answer 0.3.

The number of variables is $n=5$, and the number of equations is $m=4$. Let $r$ be the rank of $A$ ($=$ the number of leading $1’\mathrm{s}$ in the RREF of $A$).

Suppose we have a homogeneous system of $m$ equations in $n$ variables $x_1, x_2,\ldots,x_n$. If $n>m$, that is, if there are more variables than equations, the system has infinitely many solutions. It is also possible, but not required, to have a nontrivial solution if $n=m$ and $n<m$.

Theorem 3. A homogeneous linear system with more unknowns than equations has
infinitely many solutions.
Example 4.

Consider the linear system
\begin{eqnarray*}
\begin{array}{rrrrrrrrr}
x_1&+&2x_2&+&x_3& & =&0\\
2x_1&-&2x_2& +&3x_3& &=&0\\
\end{array}
\end{eqnarray*}

  1. Without solving the linear system, could you predict the number of solutions?
  2. Solve the linear system by Gauss-Jordan elimination.

Answer 0.4.

  1. This is a homogeneous linear system of $2$ equations and $3$ unknowns. Since there are more unknowns than equations, there are infinitely many solutions.

  2. First, we find the RREF of the corresponding augmented matrix. The augmented is
    $$\left[\begin{array}{rrr|r}
    1 & 2 & 1 & 0 \\
    2 & -2 & 3 & 0
    \end{array}\right].$$
    We apply the following elementary row operations to the augmented matrix to obtain the RREF.
    \begin{eqnarray*}
    & & \left[\begin{array}{rrr|r}
    1 & 2 & 1 & 0 \\
    2 & -2 & 3 & 0
    \end{array}\right]
    \begin{array}{r}
    \\
    \underrightarrow{R_2\to R_2-2R_1}\\
    R_3\to R_3-R_1\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & 2 & 1 & 0 \\
    0 & -6 & 1 & 0
    \end{array}\right]\\
    & &\begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to -\frac{1}{6}R_2}\\
    {}\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & 2 & 1 & 0 \\
    0 & 1 & -\frac{1}{6} & 0
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_1\to R_1-2R_2}\\
    {}\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & 0 & \frac{4}{3} & 0 \\
    0 & 1 & -\frac{1}{6} & 0
    \end{array}\right]
    \end{eqnarray*}
    The linear system corresponding to the RREF above is
    \begin{eqnarray*}
    \begin{array}{rrrrrrr}
    x& & & +& \frac{4}{3}z &=&0\\
    & & y&-&\frac{1}{6}z&=&0
    \end{array}
    \end{eqnarray*}

    The leading variables are $x$ and $y$, and the free variable is $z$. We can set the free variable $z$ as a parameter, say $z=t$, and solve for $x$ and $y$ in terms of the parameter $t$. Hence the parametric solutions are given by
    \begin{eqnarray*}
    x&=&-\frac{4t}{3}\\
    y&=&\frac{t}{6}\\
    z&=&t,\qquad t\in\mathbb{R}.
    \end{eqnarray*}

1. Worksheet 1

Problem 1. Consider the following system of linear equations:
\begin{eqnarray*}
\begin{array}{rrrrrrrrr}
4x_1&-&x_2&-&x_3& & & =&160\\
-x_1&+&4x_2& & &-&x_4&=&140\\
-x_1& & & +&4x_3 &-&x_4&=&60\\
&-&x_2& -&x_3 &+&4x_4&=&40
\end{array}
\end{eqnarray*}

  1. Write the system as an augmented matrix and find its RREF.
  2. Solve the system.

Solution of Problem 1.

  1. The augmented matrix is
    $$
    \left[\begin{array}{rrrr|r}
    4 & -1 & -1 & 0 & 160 \\
    -1 & 4 & 0 & -1 & 140 \\
    -1 & 0 & 4 & -1 & 60 \\
    0 & -1 & -1 & 4 & 40 \\
    \end{array}\right]$$
    Next, we find the RREF using elementary row operations. We have

    \begin{eqnarray*}
    & & \left[\begin{array}{rrrr|r}
    4 & -1 & -1 & 0 & 160 \\
    -1 & 4 & 0 & -1 & 140 \\
    -1 & 0 & 4 & -1 & 60 \\
    0 & -1 & -1 & 4 & 40 \\
    \end{array}\right]
    \begin{array}{r}
    \\
    \underrightarrow{R_1\leftrightarrow R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    -1 & 4 & 0 & -1 & 140 \\
    4 & -1 & -1 & 0 & 160 \\
    -1 & 0 & 4 & -1 & 60 \\
    0 & -1 & -1 & 4 & 40 \\
    \end{array}\right]\\
    & &\begin{array}{r}
    \\
    \\
    \underrightarrow{R_1\to -R_1}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140 \\
    4 & -1 & -1 & 0 & 160 \\
    -1 & 0 & 4 & -1 & 60 \\
    0 & -1 & -1 & 4 & 40 \\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to R_2-4R_1}\\
    R_3\to R_3+R_1\\
    {}
    \end{array}\\
    &&
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 15 & -1 & -4 & 720 \\
    0 & -4 & 4 & 0 & -80\\
    0 & -1 & -1 & 4 & 40 \\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\leftrightarrow R_4}\\
    {}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & -1 & -1 & 4 & 40 \\
    0 & -4 & 4 & 0 & -80\\
    0 & 15 & -1 & -4 & 720\\
    \end{array}\right]\\
    &&\begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to- R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 1 & 1 & -4 & -40 \\
    0 & -4 & 4 & 0 & -80\\
    0 & 15 & -1 & -4 & 720\\
    \end{array}\right]\begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to R_3+4 R_2}\\
    R_4\to R_4-15R_2
    {}
    \end{array}\\
    &&
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 1 & 1 & -4 & -40 \\
    0 & 0 & 8 & -16 & -240\\
    0 & 0 & -16 & 56 & 1320\\
    \end{array}\right]\begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to \frac{1}{8} R_3}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 1 & 1 & -4 & -40 \\
    0 & 0 & 1 & -2 & -30\\
    0 & 0 & -16 & 56 & 1320\\
    \end{array}\right]\\
    &&
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_4\to R_4+16R_3}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 1 & 1 & -4 & -40 \\
    0 & 0 & 1 & -2 & -30\\
    0 & 0 & 0 & 24 & 840\\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_4\to\frac{1}{4} R_4}\\
    {}
    \end{array}\\
    &&\left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 1 & -140\\
    0 & 1 & 1 & -4 & -40 \\
    0 & 0 & 1 & -2 & -30\\
    0 & 0 & 0 & 1 & 35\\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to R_3+2 R_4}\\
    R_2\to R_2+4R_4\\
    R_1\to R_1-R_4
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & -4 & 0 & 0 & -175\\
    0 & 1 & 1 & 0 & 100 \\
    0 & 0 & 1 & 0 & 40\\
    0 & 0 & 0 & 1 & 35\\
    \end{array}\right]\\
    \end{eqnarray*}

\begin{eqnarray*}
&&\begin{array}{r}
\\
\\
\underrightarrow{R_2\to R_2- R_3}\\
{}
\end{array}
\left[\begin{array}{rrrr|r}
1 & -4 & 0 & 0 & -175\\
0 & 1 & 0 & 0 & 60 \\
0 & 0 & 1 & 0 & 40\\
0 & 0 & 0 & 1 & 35\\
\end{array}\right]\begin{array}{r}
\\
\\
\underrightarrow{R_1\to R_1+4 R_2}\\
{}
\end{array}\\
&&
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 65\\
0 & 1 & 0 & 0 & 60 \\
0 & 0 & 1 & 0 & 40\\
0 & 0 & 0 & 1 & 35\\
\end{array}\right]\qquad RREF
\end{eqnarray*}

(b)
Going back to the linear system, we obtain the following:
\begin{eqnarray*}
x_1&=&65\\
x_2&=&60\\
x_3&=&40\\
x_4&=&35
\end{eqnarray*}

Problem 2. Consider the following system of linear equations:
\begin{eqnarray*}
\begin{array}{rrrrrrrrr}
x_1&-&x_2&+&4x_3& =&7\\
x_1&+&3x_2&- &6x_3&=&-13\\
2x_1&+&2x_2& -&2x_3 &=&-10
\end{array}
\end{eqnarray*}

  1. Write the system as an augmented matrix and find its RREF.
  2. Solve the system.

Solution of Problem 2.

  1. The augmented matrix is
    $$
    \left[\begin{array}{rrr|r}
    1 & -1 & 4 & 7 \\
    1 & 3 & -6 & -13 \\
    2 & 2 & -2 & -10
    \end{array}\right]$$
    Next, we find the RREF using elementary row operations. We have

    \begin{eqnarray*}
    & &\left[\begin{array}{rrr|r}
    1 & -1 & 4 & 7 \\
    1 & 3 & -6 & -13 \\
    2 & 2 & -2 & -10
    \end{array}\right]
    \begin{array}{r}
    \\
    \underrightarrow{R_2\leftrightarrow R_2-R_1}\\
    R_3\to R_3-2R_1
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & -1 & 4 & 7 \\
    0 & 4 & -10 & -20 \\
    0 & 4 & -10 & -24
    \end{array}\right]\\
    & &\begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to R_3-R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & -1 & 4 & 7 \\
    0 & 4 & -10 & -20 \\
    0 & 0 & 0 & -4
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to \frac{1}{4}R_2}\\
    R_3\to -\frac{1}{4}R_3\\
    {}
    \end{array}\\
    &&
    \left[\begin{array}{rrr|r}
    1 & -1 & 4 & 7 \\
    0 & 1 & -5/2 & -5 \\
    0 & 0 & 0 & 1
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to R_2+5R_3}\\
    R_1\to R_1-7R_3\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & -1 & 4 & 0 \\
    0 & 1 & -5/2 & 0 \\
    0 & 0 & 0 & 1
    \end{array}\right]\\
    &&\begin{array}{r}
    \\
    \\
    \underrightarrow{R_1\to R_1+R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrr|r}
    1 & 0 & 3/2 & 0 \\
    0 & 1 & -5/2 & 0 \\
    0 & 0 & 0 & 1
    \end{array}\right]\qquad\mbox{RREF}
    \end{eqnarray*}

  2. Going to the linear system, we obtain
    \begin{eqnarray*}
    x_1+\frac{3}{2}x_3&=&0\\
    x_2-\frac{5}{2}x_3&=&0\\
    0&=&1.
    \end{eqnarray*}
    The last equation, $0=1$, gives a contradiction. Therefore is no solution.

Problem 3. Consider the following system of linear equations:
\begin{eqnarray*}
\begin{array}{rrrrrrrrr}
x_1&+&2x_2&-&3x_3& +& x_4& =&13\\
2x_1&+&x_2&- &4x_3 &-&2x_4&=&13\\
3x_1& -&2x_2 & +&x_3 &+&x_4&=&-5\\
6x_1&+&x_2& -&6x_3 &&&=&21
\end{array}
\end{eqnarray*}

  1. Write the system as an augmented matrix and find its RREF.
  2. Solve the system.

Solution of Problem 3.

  1. The augmented matrix is
    $$
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    2 & 1 & -4 & -2 & 13 \\
    3 & -2 & 1 & 1 & -5 \\
    6 & 1 & -6 & 0 & 21
    \end{array}\right]$$
    Next, we find the RREF using elementary row operations. We have

    \begin{eqnarray*}
    & & \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    2 & 1 & -4 & -2 & 13 \\
    3 & -2 & 1 & 1 & -5 \\
    6 & 1 & -6 & 0 & 21
    \end{array}\right]
    \begin{array}{r}
    \\
    \underrightarrow{R_2\leftrightarrow R_2-2R_1}\\
    R_3\to R_3-3R_1\\
    R_3\to R_3-6R_1
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & -3 & 2 & -4 & -13 \\
    0 & -8 & 10 & -2 & -44 \\
    0 & -11 & 12 & -6 & -57\\
    \end{array}\right]\\
    & &\begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to R_3-3R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & -3 & 2 & -4 & -13 \\
    0 & 1 & 4 & 10 & -5 \\
    0 & -11 & 12 & -6 & -57\\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\leftrightarrow R_3}\\
    {}
    \end{array}\\
    &&
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & 1 & 4 & 10 & -5 \\
    0 & -3 & 2 & -4 & -13 \\
    0 & -11 & 12 & -6 & -57\\
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to R_3+3R_2}\\
    R_4\to R_4+11R_2\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & 1 & 4 & 10 & -5 \\
    0 & 0 & 14 & 26 & -28 \\
    0 & 0 & 56 & 104 & -112
    \end{array}\right]\\
    &&\begin{array}{r}
    \\
    \\
    \underrightarrow{R_4\to R_4-4R_3}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & 1 & 4 & 10 & -5 \\
    0 & 0 & 14 & 26 & -28 \\
    0 & 0 & 0 & 0 & 0
    \end{array}\right]
    \begin{array}{r}
    \\
    \\
    \underrightarrow{R_3\to \frac{1}{14} R_3}\\
    {}
    \end{array}\\
    &&
    \left[\begin{array}{rrrr|r}
    1 & 2 & -3 & 1 & 13 \\
    0 & 1 & 4 & 10 & -5 \\
    0 & 0 & 1 & \frac{13}{7} & -2 \\
    0 & 0 & 0 & 0 & 0
    \end{array}\right]\begin{array}{r}
    \\
    \\
    \underrightarrow{R_2\to R_2-4 R_3}\\
    R_1\to R_1+3R_3
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 2 & 0 & \frac{46}{7} & 7 \\
    0 & 1 & 0 & \frac{18}{7} & 3 \\
    0 & 0 & 1 & \frac{13}{7} & -2 \\
    0 & 0 & 0 & 0 & 0
    \end{array}\right]\\
    &&\begin{array}{r}
    \\
    \\
    \underrightarrow{R_1\to R_1-2 R_2}\\
    {}
    \end{array}
    \left[\begin{array}{rrrr|r}
    1 & 0 & 0 & \frac{10}{7} & 1 \\
    0 & 1 & 0 & \frac{18}{7} & 3 \\
    0 & 0 & 1 & \frac{13}{7} & -2 \\
    0 & 0 & 0 & 0 & 0
    \end{array}\right]
    \qquad\mbox{RREF}
    \end{eqnarray*}

  2. Going to the linear system, we obtain
    \begin{eqnarray*}
    x_1+ \frac{10}{7}x_4&=&1\\
    x_2+\frac{18}{7}x_4&=&0\\
    x_3+\frac{13}{7}x_4&=&-2.
    \end{eqnarray*}
    The leading variables are $x_1$, $x_2$, and $x_3$. Only $x_4$ is a free variable. Now we set the free variable as a parameter, say $x=t$, and we solve for $x_1$, $x_2$ and $x_3$.
    It follows that the parametric solutions are
    \begin{eqnarray*}
    x_1&=&1-\frac{10}{7}t\\
    x_2&=&-\frac{18}{7}t\\
    x_3&=&-2-\frac{13}{7}t\\
    x_4&=&t \qquad t\in\mathbb{R}
    \end{eqnarray*}

Problem 4. Consider a system of linear equations:
\begin{eqnarray*}
\begin{array}{ccccccccccc}
a_{11}x_1 & +& a_{12}x_2& +& a_{13}x_3& +& \cdots & +&a_{1n}x_n&=&b_1\\
a_{21}x_1 & +& a_{22}x_2& +& a_{23}x_3& +& \cdots & +&a_{2n}x_n&=&b_2\\
a_{31}x_1 & +& a_{32}x_2& +& a_{33}x_3& +& \cdots & +&a_{3n}x_n&=&b_3\\
& \vdots & & \vdots & & \vdots & & \vdots & &\vdots &\\
a_{m1}x_1 & +& a_{m2}x_2& +& a_{m3}x_3& +& \cdots & +&a_{mn}x_n&=&b_m
\end{array}
\end{eqnarray*}

  1. If $b_1 = b_2 = b_3 = \cdots = b_m = 0$, then the system is homogeneous. Can you find a solution to a homogeneous system without solving it? If so, what is it? (Such a solution is called the trivial solution)
  2. How many solutions can a homogenous system of linear equations have?

Solution of Problem 4.

  1. $(0,0,\cdots,0)$ is always a solution of the homogeneous linear system.
  2. For a homogeneous linear system, we have only two possibilities:
    either it has exactly one solution (in this case, $(0,0,\cdot,0)$ is the only solution), or it has infinitely many solutions (of course, including the trivial solution).

 

Related

Tags: constant coefficientsdifferential equationselectrical circuitsengineering.Gaussian eliminationhomogeneous linear systemkernellinear algebralinear equationslinear independencelinear transformationsmatrix inversionmechanical systemsnull spaceoscillating systemsphysicsvector space
Advertisement Banner
Next Post

Introduction to Matrices: Definition, Operations, and Applications.

Invertible Matrices and $2 \times 2$ Invertible Matrices: Properties and Applications

Invertible Matrices and Elementary Matrices

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent News

Invertible Matrices and Elementary Matrices

March 5, 2023

Invertible Matrices and $2 \times 2$ Invertible Matrices: Properties and Applications

March 2, 2023

Category

  • Explore
  • Linear Algebra
  • Uncategorized

Site Link

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

About Us

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.
  • Linear Algebra
  • Introduction to Calculus
  • Explore
  • Contact
  • My Courses

© 2017 JNews - Premium WordPress news & magazine theme by Jegtheme.

No Result
View All Result
  • Home
  • Quizzes
  • Lessons
  • Calculus
  • Linear Algebra
  • Courses
  • Introduction to Calculus 1
  • Linear Algebra
  • My Courses

© 2017 JNews - Premium WordPress news & magazine theme by Jegtheme.

Welcome Back!

Sign In with Facebook
Sign In with Google
Sign In with Linked In
OR

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Sign Up with Facebook
Sign Up with Google
Sign Up with Linked In
OR

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?

Insert/edit link

Enter the destination URL

Or link to existing content

    No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.